

Page 1 of 51

Using
Mapping Memory Manager (3M)

with
CIDOC CRM

Dominic Oldman
(DOldman@thebritishmuseum.ac.uk)

Maria Theodoridou
(maria@ics.forth.gr)

Georgios Samaritakis
(samarita@ics.forth.gr)

Draft
Version 5b

3M version 3.0

3MEditor version 3.0
X3ML version 1.7.1

mailto:maria@ics.forth.gr
mailto:samarita@ics.forth.gr

Page 2 of 51

Contents

1 Introduction .. 3

 What is 3M? .. 3 1.1

 Who should be Mapping Data? ... 4 1.2

 Mapping Mentality ... 5 1.3

2 CIDOC CRM .. 6

3 Thinking in terms of Relationships & Events ... 7

 The Process of Semantic Harmonisation / Reconciliation ... 8 3.1

4 Resource Description Framework Schema (RDFS) ... 9

 Classes and Properties .. 9 4.1

 Domain and Range .. 9 4.2

5 Levels of Knowledge .. 11

6 CIDOC CRM Domain/Range Table ... 12

 CIDOC CRM Property Hierarchy – sample: .. 12 6.1

7 3M Concepts ... 13

 Mapping Community .. 13 7.1

 What does a mapping consist of? ... 13 7.2

 X3ML ... 15 7.3

 XPATH ... 16 7.4

 Simple Knowledge Organisation System (SKOS) ... 19 7.5

8 Using the FORTH 3M Service ... 20

9 Creating a new Mapping ... 21

 Create ... 21 9.1

 Finding your mapping ... 22 9.2

 Configuring your Mapping .. 22 9.3

9.3.1 Info Tab ... 22

10 Editing your Mapping .. 27

 The First Domain ... 27 10.1

 Links & Semantics .. 28 10.2

 Links & Intermediates .. 29 10.3

 Multiple Instantiation .. 33 10.4

 Relational database JOIN ... 35 10.5

 Additional Link Information ... 36 10.6

 Links and Rules .. 37 10.7

10.7.1 Equality and Inequality .. 37

 Existence & Non-Existence .. 39 10.8

 Narrowness ... 39 10.9

 Multiple rules .. 39 10.10

 Comments ... 39 10.11

11 Instance and Label Generation .. 41

 Custom Instance Generators ... 44 11.1

 Label Generators ... 45 11.2

12 Transformation ... 47

13 Analysis ... 47

14 Quick Reference to Other 3M functions .. 49

Page 3 of 51

1 Introduction

 What is 3M? 1.1
The 3M is a web application suite containing several software sub-components and exploiting several external services.

It is available online (http://www.ics.forth.gr/isl/3M/) and its main functionality is to assist users during the mapping

definition process, using a human-friendly user interface and a set of sub-components that either suggest or validate

the user input. All the components of the 3M have been developed as open source components in the context of the

projects CultureBrokers, ARIADNE, KRHPIS – POLITEIA. More specifically, the 3M components have been released under

the European Union Public License whereas the X3ML engine has been released under the Apache 2 license. FORTH

(Foundation for Research & Technology – Hellas) is the main developer of 3M and is also the administrative home of

the CIDOC CRM (Conceptual Reference Model). Delving BV (www.delving.eu) is a software development company

located in Holland and has contributed to the development of the X3ML engine, that handles the URI generation and

the data transformation to rdf.

3M allows data experts to transform their internal structured data and other associated contextual knowledge to other

schemas and, in particular, the CIDOC CRM (Conceptual Reference Model). Fields or elements from a source database

(Source Nodes) are aligned with one or more entities described in the target schema so that the data from an entire

system can be transformed. The purpose of this is typically for publication on the Web and in particular meaningful

integration with other data also transformed to the same target schema.

Although 3M can map data to other schemas it is particularly aimed at mapping to contextual data and to CIDOC CRM,

and alignment to it is based, not just on Source Nodes, but on other implicit information known to the owning

organisation. Mapping data requires good communication with the producers of data because mapping, particularly to

the CIDOC CRM, is not simply a technical exercise but provides the opportunity for additional knowledge to be encoded

and published. The development of 3M attempts to support the need to involve and record the knowledge of the data

producers and ensure the best possible semantic and contextual mapping of cultural data.

3M is part of an ongoing development project based on a Data Provisioning reference model called Synergy

(http://www.cidoc-crm.org/docs/SRM_v0.1.pdf). Synergy describes the relationships and processes required for high

quality data provisioning and data integration. It identifies the different processes and roles involved in data

provisioning and data aggregation. 3M supports some of these processes but in particular the schema matching and

X3ML transformation, including support for Linked Data Publication.

Figure 1: https://prezi.com/36wspw0bed6v/provider-and-aggregator/ (Gerald de Jong)

The aim of Synergy is to identify the different roles and processes which should be separated and which are currently

combined. 3M takes these principles and attempts to separate out technical tasks from data representation tasks. In

other mapping applications functions can be highly sophisticated but because they lack this separation they make it

difficult for data experts to use them, and therefore mapping can remained locked into technical processes and roles.

http://www.ics.forth.gr/isl/3M/
http://www.delving.eu/

Page 4 of 51

 Who should be Mapping Data? 1.2

Figure 2: Tim Clark, Expert and Head of Japanese, Dept. of Asia, British Museum

Contextual data mapping from internal (closed world) institutional systems is an initial step to developing a richer

digital representation of cultural things. Much of the data produced by cultural heritage organisations describes objects

in terms of their physical and technical properties. While this is useful information within institutions it is less useful to

wider groups and audiences. Less attention is given to historical significance and relevance which is left to handcrafted

textual narratives in other forms including books, exhibitions and e-publishing. Cultural Heritage cataloguing standards

don’t support this broader information, yet digital audiences, like physical visitors, are likely to find this information

more engaging. Contextual mapping is also crucial for research and provides the foundations necessary for this wider

range of knowledge and information to be layered onto canonical institutional data. Data mapping should be seen as an

initial part of a larger ecosystem for developing and integrating knowledge.

Traditionally mapping data has been seen as a mechanical process associated with information technologists and

software developers. However, the skills required for mapping cultural heritage data to a contextual representation are

not primarily information technology skills, and sit more comfortably with people who understand the data rather than

people who understand the technology – although a collaboration is ideal!

Curators, for example, are skilled in disseminating information about objects to a wide range of audiences. When

curators design an exhibition they create an environment in which relationships can be understood by many different

types of visitor, often supporting particular historical narratives. Objects are not just lined up in broad categories with a

label that lists a selection of their physical properties. Curators create an environment designed to answer questions

about the relevance of objects and associated events in history, and their significance within the context of the

exhibition. Ideally, an exhibition should inspire visitors and encourage them to make their own connections exploring

their own knowledge and experience. Contextual data provides a means for people to explore a digital world in which

curators and scholars have embedded the same type of knowledge used in exhibitions, but to establish relationships

across a wider range of sources and across different historical narratives.

Technologists are familiar with processing information and integrating data between information systems as part of

systems integration projects. Representing data semantically is a different task and semantic data mapping relies on a

correspondence with the producers of information, not just an abstract database of rows and columns. For contextual

data transformation, the bigger the distance between the process of mapping data and the collection/object experts,

the more likely the outcome will be unsatisfactory and contain errors. As such curatorial staff and other experts who

understand the objects the most, are the ideal data mappers and developers of digital knowledge representation.

Page 5 of 51

 Mapping Mentality 1.3
As already stated the correspondence between institutional knowledge and digital representation is not a narrow, field

to field, schema to schema relationship. Source information is transformed into a semantic framework which is

informed not just from the source data, but from unrecorded institutional knowledge. The more context and meaning

that a mapping can incorporate the richer it will become allowing the internal database schema, based on artificial

constructs, to be transformed into more universal ‘real’ concepts. Traditionally when we create databases we are

thinking about internal organisational requirements and standard database nomenclature. We don’t have to relate

anything to real life concepts and it is sufficient that the organisation can, usually after some training and experience,

understand what things mean and how to interact with the database. Explicit meaning is not applied to the database

but is expanded by the software, user interfaces, training and manuals and the knowledge that organisational experts

retain. Technologists are particularly used to working within these artificial boundaries and mould user concepts into a

view of the data that they are more comfortable with.

Sarah Fagg - http://creativecommons.org/licenses/by-nc-nd/2.0/

The CIDOC CRM ontology is based on descriptions of reality (described scientifically) and there is no opportunity to,

‘make it up’ as you go along. We can’t simply add another entity or field arbitrarily as we tend to do when adding new

tables and fields to a database (and in the same way we can’t invent a new animal, mineral, vegetable or invent and

add another word to the dictionary). However, moving from an artificial view of data, in which people are working

within the same organisational knowledge environment, to a real world representation of data, in which information is

related to universal concepts, is something that requires a different approach and a reconditioning away from

technology led practices. The so called ‘complexity’ of the CRM is simply a matter of aligning knowledge with real world

general concepts – something that we are not used to doing and which only seems different because of the way in

which data representation has been technology led. In reading this manual and other CIDOC CRM materials you are

invited to take one of two pills. You can take a blue pill, in which case, “the story ends, you wake up in your bed and you

believe whatever you want to believe”, or you take the red pill and “see how far the rabbit hole goes”. (The Matrix

1999)

Page 6 of 51

2 CIDOC CRM
The CIDOC CRM is an ontology that establishes a set of universal concepts that are bound to reality. This eliminates the

problem of integrating data in open data environments. Instead of attempting to integrate data based on artificial data

profiles and terminological concepts, a practically impossible task, the CIDOC CRM harmonises data through a

‘framework’ of semantic relationships and entities (classes). This is very important because instead of simply producing

unified models of fixed fields and values such as those in traditional union catalogues, the CRM allows data to retain its

relationships and vocabularies (enhancing them semantically) so that these can be compared and studied rather than

homogenised – something crucial to both scholarship and interesting engagement.

 “Concepts are the units of thought — ideas, meanings, or (categories of) objects and events—which underlie many

knowledge organization systems. As such, concepts exist in the mind as abstract entities which are independent of

the terms used to label them.”
1

As such classification concepts provide poor support for integrating heterogeneous cultural heritage data and by

themselves, without context, are not that useful.

The principles of the CIDOC CRM are documented in the CIDOC CRM Primer
2
 and are summarised as follows.

1. The CIDOC CRM consists of a set of general real world things that can be connected through the use of

properties or relationships.

Ty
p

e
s

C
o

n
ce

pt
u

al
 v

o
ca

b
u

la
ri

e
s,

 t
h

e
sa

u
ri

, e
tc

A
p

p
e

llatio
n

s
P

ro
v

id
e n

am
es fo

r real th
ings

Actors
People and Groups

Who

P
er

sp
ec

ti
ve

s
Id

en
tity

Events
Temporal

Things
Physical and
Conceptual

Things
Physical and
Conceptual

Events
Temporal

Figure 3: CIDOC CRM - High Level View

2. CIDOC CRM things and relationships have been abstracted as generalisations from large numbers of cultural

heritage organisations and involved talking to a significant numbers of cultural heritage experts.

3. There are two key branches of the CIDOC CRM. There are things that have a persistent identity that can, by

their nature, survive events (physical things or ideas and concepts), and there are the temporal concepts (like

events) that have a nature of happening rather than being.

4. Things and relationships exist in a hierarchy of meanings that provide different levels of generalisation (or

specialisation depending on the way you look at it) but harmonisation can occur across these levels.

Here is a typical (informal) CRM statement:

An object (which has a type)
 -was produced by
 -an event
 -that used a particular technique
 (that is described by an authority term)
 -that took place in a particular time period
 (that is described by an authority term and date range)
 -that was carried out by a particular person
 (who is identified and described in a biographical record)
 (who is identified by one or more names)

1
 See W3C SKOS Primer

2
 www.cidoc-crm.org/docs/CRMPrimer_v1.1.pdf

Page 7 of 51

3 Thinking in terms of Relationships & Events
We are used to describing objects with lists of labels and values. For example, this British Museum record:

There are a few issues with this type of knowledge representation.

Firstly, it has little context and this can make the representation difficult to interpret beyond a simple level, both for

humans and computers, with ambiguity particularly affecting integration with other data sources.

Secondly, regardless of the standards that may be employed by different organisations the exact meaning of fields and

values can be different. For example, the term, ‘knives’ is interpreted and represented differently in different

vocabularies, ‘Creator’ used by itself is highly generalised and used in different ways supporting a very wide range of

meaning. The event and relationship form of CIDOC CRM avoids these issues but in doing so changes the way that you

must think about the data and how it is represented.

The details of this object imply a range of different events or activities which are commonly understood by external

observers. These are the events that provide a framework by which connections can be made with properties of

context that also have universal application. Moreover, the full details of these event may not be fully known to the

owner of the object and the event framework supports the addition of new facts without affecting the integrity of the

rest of the data.

Page 8 of 51

 The Process of Semantic Harmonisation / Reconciliation 3.1

Different data records contain
different information organised
in different ways with different
structures and vocabularies - but
underlying this they contain
common semantic concepts that
are not explicitly stated or
related.

By identifying the semantic
framework and context implicit in
the data, and making it explicit,
these records can be harmonised
while retaining the properties
and details.

This harmonised context provides
a mechanism for matching
instances of people, places and
other entities.

It provides an environment
where different localised
vocabularies can be compared as
research objects.

Page 9 of 51

4 Resource Description Framework Schema (RDFS)
The CIDOC CRM is a knowledge representation system independent of any particular technology. When applying it to a

technical implementation, like Linked Data, there will inevitably be some technical concepts that data mapping

software use and that you should be aware of because they have some bearing on data mapping methods.

 Classes and Properties 4.1
The CIDOC CRM is defined in a reference document

3
 and there is an encoding available as a RDFS file for use in Linked

Data projects. RDFS is the schema language for RDF which is the meta-model that defines triple statements, Subject,

Predicate & Object. This is the model that supports data. RDFS is separate from the data but tells us something about it

(starts to introduce an infrastructural level of semantics) and introduces the idea of inference and different levels of

knowledge.

Every Entity in the CRM is defined as a Class – an RDFS Class. Here is a section of the CRM RDFS file. It is fairly simple. It

defines a Class, in this case E7_Activity, some labels in different languages, a comment and then asserts that it is a Sub

Class, or a specialisation, of E5_Event.

This means that E7_Activity is also a member of the class E5_Event and that when we talk about Events, this includes

Activities. In the CRM there are also some more specific classes which are sub classes of Activity which have their own

sub classes. These are simply specialisations. If I say that an Activity was carried out by an Actor, I could also say, if I

knew the specifics, that Production was carried out by a Person. Through RDFS inference a query about what Activities

had been carried out by an Actor, would retrieve both statements.

Equally, properties are defined in the RDFS file and these two can have sub properties. Here is the property definition

for P14_carried_out_by

Notice that carried_out_by is a sub-property of had_participant which is a broader generalisation. When we use

P11_had_participant, by inference we can automatically say that this also means, P14_carried out by. With most

Linked Data systems we also have the choice of turning inference off.

 Domain and Range 4.2
In the above encoding you can also see rdfs:domain and rdfs:range. This defines between what entities a property can

be used. This is extremely important to maintain the integrity of the semantics within an ontology. P14_carried_out_by

has a Domain of E7_Activity and a Range of E39_Actor. This means that its starting Domain can be Activity or (by

inference) any sub class below it in the hierarchy of classes. Also that the entity that it ends with can be E39_Actor or

3
 http://www.cidoc-crm.org/official_release_cidoc.html

http://www.cidoc-crm.org/official_release_cidoc.html

Page 10 of 51

any sub classes below that. This is important for the mapping process and 3M uses the same terminology of Domain

and Range.

Page 11 of 51

5 Levels of Knowledge
The diagram below shows some of the hierarchy of the CIDOC CRM on a branch that shows Temporal Entities. We saw

in the last section that entities are arranged as sub-classes of others. This provides levels of specialisation that allows

different levels of knowledge to be applied. This also means that if, for example, alignment can only be made to the

Event entity, that it will still integrate with data described as a particular Activity. All Events are Temporal Entities and

all Activities are Events.

A similar hierarchy is used with Persistent Items gradually moving from broad description of things that can be physical

or conceptual and man-made or biological.

 Applications like Stanford’s Web protégé allow you to browse the

hierarchy and read the descriptions of the entities. (see

http://webprotege.stanford.edu, and find the CIDOC CRM RDFS v6.0

entry in the listing). For example, a Man-Made Thing is described as;

“This class comprises discrete, identifiable man-made items that are

documented as single units. These items are either intellectual

products or man-made physical things, and are characterized by

relative stability. They may for instance have a solid physical form, an

electronic encoding, or they may be logical concepts or structures.”

A Physical Man-Made Thing specialises to physical rather than

immaterial things and the hierarchy branches into physical and

conceptual. The description is;

“This class comprises all persistent physical items that are purposely

created by human activity.”

 Figure 4. Screenshot from Web Protege

http://webprotege.stanford.edu/

Page 12 of 51

6 CIDOC CRM Domain/Range Table
The domain and range of CIDOC CRM relationships are produced in a table in the CIDOC CRM reference document. The

following table shows some of these.

 CIDOC CRM Property Hierarchy – sample: 6.1
Property id Property Name Entity – Domain Entity - Range

P1 is identified by (identifies) E1 CRM Entity E41 Appellation

P48 - has preferred identifier (is preferred identifier of) E1 CRM Entity E42 Identifier

P78 - is identified by (identifies) E52 Time-Span E49 Time Appellation

P87 - is identified by (identifies) E53 Place E44 Place Appellation

P102 - has title (is title of) E71 Man-Made Thing E35 Title

P131 - is identified by (identifies) E39 Actor E82 Actor Appellation

P149 - is identified by (identifies) E28 Conceptual Object E75 Conceptual Object Appellation

P2 has type (is type of) E1 CRM Entity E55 Type

P137 - exemplifies (is exemplified by) E1 CRM Entity E55 Type

P3 has note E1 CRM Entity E62 String

P79 - beginning is qualified by E52 Time-Span E62 String

P80 - end is qualified by E52 Time-Span E62 String

P4 has time-span (is time-span of) E2 Temporal Entity E52 Time-Span

P5 consists of (forms part of) E3 Condition State E3 Condition State

P7 took place at (witnessed) E4 Period E53 Place

P26 - moved to (was destination of) E9 Move E53 Place

P27 - moved from (was origin of) E9 Move E53 Place

P8 took place on or within (witnessed) E4 Period E18 Physical Thing

P9 consists of (forms part of) E4 Period E4 Period

P10 falls within (contains) E4 Period E4 Period

P12 occurred in the presence of (was present at) E5 Event E77 Persistent Item

P111 - added (was added by) E79 Part Addition E18 Physical Thing

P113 - removed (was removed by) E80 Part Removal E18 Physical Thing

P11 - had participant (participated in) E5 Event E39 Actor

P14 - - carried out by (performed) E7 Activity E39 Actor

P22 - - - transferred title to (acquired title through) E8 Acquisition E39 Actor

P23 - - - transferred title from (surrendered title through) E8 Acquisition E39 Actor

P28 - - - custody surrendered by (surrendered custody through) E10 Transfer of Custody E39 Actor

P29 - - - custody received by (received custody through) E10 Transfer of Custody E39 Actor

P96 - - by mother (gave birth) E67 Birth E21 Person

P99 - - dissolved (was dissolved by) E68 Dissolution E74 Group

P143 - - joined (was joined by) E85 Joining E39 Actor

P144 - - joined with (gained member by) E85 Joining E74 Group

P145 - - separated (left by) E86 Leaving E39 Actor

P146 - - separated from (lost member by) E86 Leaving E74 Group

P151 - - was formed from (participated in) E66 Formation E74 Group

P16 - used specific object (was used for) E7 Activity E70 Thing

This table can be copied into an excel spreadsheet so that you can filter the table against domain, range or properties.

Page 13 of 51

7 3M Concepts
The 3M workflow that leads to Linked Data generation (RDF or Resource Description Framework) is this.

It is important to note that although 3M supports this process and will continue to be developed, it represents a single

tool which is part of a wider set of activities that require the interaction of people. Software alone is not sufficient to

generate quality contextual data mapping.

 Mapping Community 7.1
3M is a community web application. While it supports security for editing files it allows the whole community to view a

mapping file. This means that you can look at other users mapping definitions to learn techniques and see approaches

to different types of information. You can also share editing rights with others. Although only one person can edit at a

time this provides some capability to share the mapping process with someone else online – perhaps to help, or to

make corrections. The longer term objective of 3M is to provide a knowledge base of mappings (CRM patterns).

 What does a mapping consist of? 7.2
An XML source schema – This can be derived from the XML data that is exported from an information system. The

export should be consistent so that if changes are made to the data the XML export remains the same. It is inevitable

that XML source schemas change over time – for example to accommodate new information. When this happens,

adjustments to the mapping and re-publication will be required.

A URI Generator policy File (XML) – The 3M system supports URI Generators, which are templates for creating an URI.

These templates are defined in an XML file.

Target Schema(s) – The 3M system supports schema that are defined in different forms (see The Configuration Tab is

used to configure various 3MEditor options. Options so far:

Source Analyzer

The source analyzer option is simply to choose whether you want to choose source nodes from a pull down of available

elements, or whether you simply want to type them in yourself. In order to enable the pull down, you will have to

upload a source schema or an example xml file first. Even if Source Analyzer is enabled, you can always ignore its

suggestions, type something different and click Enter.

Source Paths

By default, source paths are stripped and a more compact view is presented to the user. However, sometimes users

prefer to show the entire xpath. This option allows the user to choose between “short” and “full” paths.

Generators

The generators option is simply to choose whether you want to choose generator (instance or label) names from a pull

down of available generators, or whether you simply want to type them in yourself. Available generators are either

built-in or provided by an uploaded generator policy file. Even if “Generators” is set to “Auto” , you can always ignore

its suggestions, type something different and click Enter.

Start a new
mapping

Specify the
source and

target schemas

Map from
source to

target

Create a URI
policy

Generate
Linked Data

Page 14 of 51

Target A).

RDFS is the acronym for Resource Definition Framework Schema. The namespace is http://www.w3.org/2000/01/rdf-

schema#. It includes, for example, rdfs:label. Other target schemata include:

SKOS – this defines a schema including properties such as skos:prefLabel (the preferred label for a concept), narrower,

broader, scope note, scheme, and so on. The SKOS namespace is http://www.w3.org/2004/02/skos/core#. It includes,

for example, skos:prefLabel.

These target schema will usually be defined with a namespace. Most schemas or ontologies are defined with a web

address. These can be shortened by a name space. For example, the SKOS schema is available at http://

http://www.w3.org/2004/02/skos/core#. The namespace of SKOS is used to replace the main URI address so that

http://www.w3.org/2004/02/skos/core#prefLabel becomes skos:prefLabel.

A Mapping Definition File (X3ML) - When the source scheme is mapped to the target schemas it produces a mapping

definition file that describes the mapping. It also includes information about how to create the URI’s for the nodes that

will be generated. Details of X3ML are described below. Mapping from source to target schemas requires a knowledge

of the source schema and the target schema.

Mapping files can be exported from 3M and they will be zipped into a compressed file. These files can be re-imported

back into 3M if required creating a new mapping instance. (See export and import on the more menu).

http://www.w3.org/2004/02/skos/core

Page 15 of 51

 X3ML 7.3
The 3M tool is a software application designed to support data mapping. It needs a mechanism for recording the

alignment between source and target schemas. X3ML is an XML schema (Extensible Markup Language) designed to

support the processes and functions of the Synergy data provisioning reference. It provides a clear definition of the

mapping between the source schema and the target schema including the relationship and other logic to support a

robust transformation of data. It records these things in a way as clear as possible so that it is even possible to

understand a mapping from the source X3ML file and see exactly how 3M processes a mapping definition. 3M itself

currently works by mapping from a XML source, usually an export of data from a source information system.

The following example shows the different parts of the

X3ML schema:

The mapping element denotes the start of a mapping. A

domain is the CRM entity from which relationships to

other CRM entities originate. In this example the domain

is the object itself. The object record (in this case

identified with the source element ‘record’) has a source

node of;

adlibXML/recordList/record

This is the schema element in the source XML which

represents the object record and which is contained in the

X3ML <source_node> element. This is followed by the

<target_node> – the element in the CRM that denotes the

object. In this case E22_Man-made_Object. In this

example the target has also been assigned a URI which is

created using the <instance_generator> node. Each

instance generator has a name and some arguments –

more later.

Once the domain is specified links are then attached to

the domain which link to other entities. The link or

relationship has a source, in this case priref. priref is an

XML element <priref> in the source file which is

immediately below the domain path, e.g.,

adlib/recordlist/record/priref. Priref is relative to the

domain path, adlib/recordlist/record.

The target relationship is P1_is_identified_by – so priref in

the source is mapped firstly to a relationship

P1_is_identified_by.

Priref is also mapped to the target node. It is not just the

field or element that determines the relationship but is

also the field that determines the target node. The target

node is E42_Identifier.

Again this node is, in another part of 3M, assigned a URI

through an instance generator. In this case part of the

instance generator uses the value inside the priref element. The statement ../PersistentIdentifier/text() means, go

back up the hierarchical one place (i.e. from adlib/recordlist/record/priref to adlib/recordlist/record and then go to

adlib/recordlist/record/PersistentIdentifier and get the text, or the value, inside that element.

These element addresses are explained in more detail below – see XPATH. Any number of links may be associated with

a particular domain.

<mapping>

 <domain>

 <source_node>//adlibXML/recordList/record</source_node>

 <target_node>

 <entity>

 <type>crm:E22_Man-Made_Object</type>

 <instance_generator name="PersistentId">

 <arg name="id" type="xpath">PersistentIdentifier/text()</arg>

 </instance_generator>

 </entity>

 </target_node>

 </domain>

 <link>

 <path>

 <source_relation>

 <relation>priref</relation>

 </source_relation>

 <target_relation>

 <relationship>crm:P1_is_identified_by</relationship>

 </target_relation>

 </path>

 <range>

 <source_node>priref</source_node>

 <target_node>

 <entity>

 <type>crm:E42_Identifier</type>

 <instance_generator name="PersistentIdThing">

 <arg name="persistent" type="xpath">../PersistentIdentifier/text()</arg>

 <arg name="thing" type="constant">priref</arg>

 </instance_generator>

 </entity>

 </target_node>

 </range>

 </link>

</mapping>

Page 16 of 51

 XPATH 7.4
3M is a developing system ultimately designed to be used by non-technical users. However, in its current iteration not

all the technical elements of mapping have been eliminated. The mapping system and URI generator rely on a basic

knowledge of XPath. XPath is a W3C (World Wide Web Consortium) recommendation that uses path expressions to

navigate through XML documents. It actually provides a syntax for defining parts of an XML document. XML documents

are treated as trees of nodes. The topmost element of the tree is called the root element. A detailed tutorial on XPath is

available in http://www.w3schools.com/xsl/xpath_intro.asp

XPath uses path expressions to select nodes in an XML document. The node is selected by following a path or steps. The

most useful path expressions, listed in http://www.w3schools.com/xsl/xpath_syntax.asp:

Expression Description

nodename Selects all nodes with the name "nodename"

/ Selects from the root node

//
Selects nodes in the document from the current node that match the selection no matter
where they are

. Selects the current node

.. Selects the parent of the current node

@ Selects attributes

Figure 5: source XML excerpt

In Figure 5 an excerpt of a source XML document representing two records is displayed. The table below lists some

desired actions in 3M, the path expressions that can be used and the result of the expressions. It should be noted that if

the path starts with a slash (/) it always represents an absolute path to an element:

http://www.w3schools.com/xsl/xpath_syntax.asp

Page 17 of 51

Desired Action in 3M Path Expression Result according to example of Figure X

Specify that record is the

source Domain (nodes

named record) //record

Selects all nodes with the name record no matter

where they are in the document.

<record priref="1" ….>

<record priref="3" ….>

Specify that record is the

source Domain (nodes

named record)

adlibXML/recordList/record

Selects all nodes with the name record that are

children of adlibXML/recordList

As above, the two nodes will be selected

Note: this approach uses absolute paths and

ensures that nested nodes with the same name

will be distinguished.

Specify that priref is the

source path (relative to the

Domain)
priref

Selects all nodes priref that are children of record

<priref>1</priref>

<priref>3</priref>

Specify that priref is the

source path only if it is a

child of exhibition/

exhibition.title (relative to

the Domain)

exhibition/ exhibition.title/priref

Selects all nodes exhibition/ exhibition.title/priref

that are children of record

<priref>1063</priref>

<priref>1063</priref>

Specify that priref is the

source path (relative to the

Domain) nomatter where it

is under record. //priref

Selects all nodes priref that are children of record

<priref>1</priref>

<priref>1063</priref>

<priref>3</priref>

<priref>1063</priref>

Get the value of attribute

priref of node record

@priref

Selects the attribute priref of the current node

(record)

priref="1"

priref="3"

Specify that value is the

source path only if it is child

of administration.name

(relative to the Domain)

administration.name/value
Selects all value elements that are children of

administration.name

Specify an if condition

based on the value of the

attribute lang in the path

administration.name/value administration.name/value/@lang

Selects the attribute lang in node value child of

administration.name (relative to record)

lang="neutral"

lang="0"

lang="1"

Page 18 of 51

lang="neutral"

lang="0"

lang="1"

Get the value of node value

if its attribute lang has the

value “neutral”

value[@lang="neutral"]/text()
Text = Nederlandse Geschiedenis

Text = Nederlandse Geschiedenis

7.4.1 Where is XPath used?

Source Nodes

In the mapping table source nodes can be inserted relative to the domain node. If the domain path is

adlibXML/recordList/record and the source node for a link is adlibXML/recordList/record/priref, then the source

node could simply say priref. Occasionally the source node might not be a direct descendent of the domain and some

XPath may be required.

Rules

The testing of data using rules often needs XPath statements since a mapping may dependent on a value attached to a

different element than the source node.

Instance Generator

XPath statements are also used in generating URIs where the data in the source is used to form Uniform Resource

Identifiers.

Page 19 of 51

 Simple Knowledge Organisation System (SKOS) 7.5
SKOS is a specification and schema supporting concept terms such as those used in thesauri, classification schemes,

subject heading systems and taxonomies within the framework of the Semantic Web. The aim is not to replace original

conceptual vocabularies but allow them to be ported as Linked Data enabling wide re-use and better interoperability

using the web.

Typically you would start a new mapping file for concepts. This means that in the core file you may end a mapping with

E55_Type and assign a URI, for example, http://collection.rijksmuseum.org/id/thesauri/12245. Another mapping file

using the same URI scheme picks up from the main mapping file.

Here is the main mapping on the domain E22_Man-Made_Object. The concept has a prefLabel (a literal label) but this

isn’t really necessary and will be duplicated alongside other SKOS properties in a separate mapping file.

The separate mapping file for Materials looks like this;

The domain is the range of the previous mapping in E22_Man-Made_Object and the links just connect to that domain.

Clearly this could have been defined in the main mapping file, but separating them reduces the size of the main

mapping file and makes things clearer.

An example is the term “gold”. This has an identifier representing the concept, with a prefLabel that is defined in both

Dutch and English (‘goud’ and ‘gold’). We used the “Add instance info” option to define the languages for each as ‘en’

and ‘nl’. A key component of SKOS is the ability to represent hierarchies using broader and narrower terms, enabling

the hierarchical links. This provides relationships to other concepts, for example, a concept with the label, ’14 carat

gold’ (narrower) and a broader term could be a concept with the label, ‘transition metal’. Terms belong to a concept

scheme (a particular authority) and different concept schemes from different organisations may appear in an

aggregated dataset but can also be linked to other schemes, doe example, using the skos property, ‘exactMatch’.

Representation in SKOS can also be associative (non-hierarchical) links, such as the relationship between one type of

event and a category of entities which typically participate in it.

http://collection.rijksmuseum.org/id/thesauri/12245
http://www.w3.org/TR/skos-reference#broader

Page 20 of 51

8 Using the FORTH 3M Service
The 3M implementation at FORTH can be accessed using a normal Web Browser at http://www.ics.forth.gr/isl/3M/,

and is free to use. However, you must first register an account to get a username and password. From the login screen

choose the sign up link and complete the form below. Fields with an ‘*’ are mandatory.

If successful you will be invited back to the login screen

You can then logon with your username and password immediately and view 3M welcome screen.

http://www.ics.forth.gr/isl/3M/

Page 21 of 51

9 Creating a new Mapping

 Create 9.1
When you create a new mapping you are asked to give it a title, optionally select one or more of the proposed Target

Schema and then click Finish. 3M proposes a list of Target Schemata but it is not restricted to these. Later on, the user

can load more Target Schemata (see Info Tab).

The proposed Target Schemata include CIDOC CRM and a suite of CRM extensions suitable for specific applications

(http://www.ics.forth.gr/isl/index_main.php?l=e&c=229).

 CIDOC CRM v6.0 – the core ontology

 CRMdig 3.2 – a model for provenance metadata

 CRMgeo 1.2 – a spatiotemporal model

 CRMsci 1.2. 2 – a scientific observation model

 CRMarchaeo 1.2.1 – an excavation model

 FRBR 2.1 – modelling the new library practice of IFLA

 CRMext4SKOSandLabel 1.2 – some of the basic properties of SKOS (Simple Knowledge Organisation System)

used to provide authority information for E55 Types (see later), for example prefLabel, broader, narrower,

scopenote; and the RDFS schema which provides useful properties like rdfs:label, used for simple string

values.

 CRMpc 1.0 – an implementation of the properties of properties (the “.1” properties) of CIDOC CRM in rdf

Page 22 of 51

If a new mapping is created successfully then the id of the new mapping is displayed. You can use the mappings link to

return to the main screen.

 Finding your mapping 9.2
The number of mappings on the FORTH implementation of 3M is increasing. However, you can search for a mapping

(title, id, username) and you can also sort and filter the mappings. This includes the ability to filter down to the

mappings that you are able to edit – “your mappings”. Use the pulldown symbol next to the search function to do this.

 Configuring your Mapping 9.3
Select your mapping from the main screen and choose Edit from the main menu. The mapping definition area has a

number of tabs. These are:

9.3.1 Info Tab
This includes project information about the mapping and the people involved in it, the source schema, the target

schemas, the sample data file, the generator policy file. Clicking Edit on the Info screen allows you to add information

about your mapping and add source and target schemas.

Page 23 of 51

Give you mapping a different title if you need to and provide some additional description about your mapping project.

You can upload a source schema, this might be an example XML file or an XML schema file. Valid formats are, XML (a

data file), XSD (a XML schema file). This allows you to reference the element names from the source XML in the

Matching Table when picking Source Nodes. (Note that source analyzer must be set to On. This setting is found on the

configuration tab)

You can also add target schema, either different ones or news versions of the ones selected during the mapping

creation.

When you add a target schema you should fill in the information – the schema name, the type of file, the version of the

schema, the namespace prefix and the full namespace uri.

The prefix is a short name that replaces the full URI name. In the example instead of referring to an ontology class or

property like this –

http://www.cidoc-crm.org/cidoc-crm/E22_Man-Made_Object

…it can be represented as

crm:E22_Man-Made_Object.

Finally, some additional information can be provided including sample data, for example, the same source data (XML)

or an HTML example, a generator policy XML file (used to create URIs) and when the mapping is complete and

processed, the resulting Linked data file.

Page 24 of 51

9.3.2 Configuration Tab
The Configuration Tab is used to configure various 3MEditor options. Options so far:

Source Analyzer

The source analyzer option is simply to choose whether you want to choose source nodes from a pull down of available

elements, or whether you simply want to type them in yourself. In order to enable the pull down, you will have to

upload a source schema or an example xml file first. Even if Source Analyzer is enabled, you can always ignore its

suggestions, type something different and click Enter.

Source Paths

By default, source paths are stripped and a more compact view is presented to the user. However, sometimes users

prefer to show the entire xpath. This option allows the user to choose between “short” and “full” paths.

Generators

The generators option is simply to choose whether you want to choose generator (instance or label) names from a pull

down of available generators, or whether you simply want to type them in yourself. Available generators are either

built-in or provided by an uploaded generator policy file. Even if “Generators” is set to “Auto” , you can always ignore

its suggestions, type something different and click Enter.

Target Analyzer

Generally, there is no restriction on the target schema. However, in the current implementation, the Target Analyzer

understands CIDOC CRM and compatible schemata or XML schemata (With restrictions). Other target schemata can be

used without the help of the Target Analyzer.

Page 25 of 51

3M uses the RDF encoding of CIDOC CRM version 6.0. Note that this is NOT a definition of the CIDOC CRM, but an

encoding derived from the authoritative release of the CIDOC CRM v6.0 on http://www.cidoc-

crm.org/official_release_cidoc.html

The target analyzers use different methods for representing schemas (ontologies) when the user clicks on a target pull

down list of properties and entities. The eXist analyzer is the default choice. It works with RDFS and RDF files, which

contain specific tags. Increasingly, ontologies are being produced in other forms that are not XML (turtle, ntriples).

Therefore another reasoner was added (the Jena reasoner) so that other RDF formats can be used. These tools allow

the Editor to display only the properties and entities that are valid with a particular mapping context. When target

schema is XML, user should choose the XML analyzer, which provides a list od

If you wish you can turn these off and simply type in what you want manually.

Target Paths

By default, target paths are stripped and a more compact view is presented to the user. However, sometimes users

prefer to show the entire path. This option allows the user to choose between “short” and “full” paths.

 “Mapping Suggester” – Roadmap

It is the intention that 3M provides a system of mapping suggestions for the CIDOC CRM ontology. This is work that has

started but will take time to evolve into a simple user interface.

http://www.cidoc-crm.org/official_release_cidoc.html
http://www.cidoc-crm.org/official_release_cidoc.html

Page 26 of 51

9.3.3 Matching Table
When you first look at a new matching table it always starts with an empty template which requires the first Domain

‘D’.

The columns are:

Source - The specific source element from the source XML.

Target - The specific part of the target schema to match with the source.

If Rule - The ability to add some simple logic to the mapping.

Comments - The ability to create some notes about an individual mapping.

A small control panel provides some ancillary functionality.

View mode collapses any editing views to get a clearer view of the mapping.

Collapse and Expand All toggles between a just seeing the mapping domains and links that have

been defined under them

Top takes you to the top (domain) of the matching table.

Bottom takes you to the bottom (last link) of the matching table.

XML provides a popup window showing the X3ML that is being produced. When in edit mode, it

only shows the X3ML for the part that is edited. Otherwise, user is provided with X3ML for the

entire tab in view.

9.3.3.1 Domain, Property and Range

The other elements of a mapping are the Property (or Relationship) and the Range. When relationships are attached

(Linked) to a Domain the Property and Range are added to complete the relationship from a Domain to another Entity.

For example, the target Domain, Man-Made Object, may use a source property (field/element name) “object_id” as

the basis for a target property, is identified by, and a target range which is the entity Identifier.

Once you have started your mapping and have an initial Domain, other Domains may be originated by being target

entities creating a hierarchy of domains which can be many levels – reflecting the structure of the CRM . For example,

the mapping from Man-Made_Object to Identifier, which may then become a domain itself for E55_Type.

Page 27 of 51

10 Editing your Mapping

 The First Domain 10.1

When you first click on the form it opens up the editor to enter the source and target information for the Domain. The

first mapping for the first Domain asks for the Source Node and the Target Entity. The first Domain is typically the main

Domain or focus of interest from which other properties, entities (including events) are connected. It is typically the

one that overall defines the rest of the record that you are mapping. This would mean that the Source Node for the

first domain is typically the XML element that provides the record boundaries or where an individual record starts and

stops. For example, in the Rijksmuseum records, the XML starts like this.

<adlibXML> is the root of the XML tree

 <recordList> is an element that groups together a series of records

<record> is the element which contains all the elements of a single record.

Therefore record is the source element for the thing which will represent a primary, and most likely the first domain of

the mapping. At the British Museum, for example, there is a mixture of different things (object types). These are all

described as Man-Made Objects. However, some items in a museum might not all be “man made” and might be, for

example, physical things from nature.

<adlibXML>

 <recordList>

 <record priref="1" created="2010-05-01T15:19:44" modification="2015-03-20T14:59:41" selected="False">

In this case I can choose the correct element from the pull down list within “Source Node” and choose the “record”

element.

Page 28 of 51

In this diagram the path adlibXML/recordList/record is selected.

The correct class for this domain can then be selected by choosing from the drop down list in Target Entity. In this case,

E22_Man-Made_Object.

In view mode the editor is cleared and I can see the selections from Source and Target clearly.

 Links & Semantics 10.2
If we wanted to map a source field containing an identifier in a record, perhaps an object identifier, it would be a link

from the Domain of E22_Man-Made_Object. Let’s say that the field is called, ‘object_identifer’. In the British Museum

different identifiers exist and sometimes a single object might have multiple identifiers.

We firstly think about the semantics both the implicit and explicit. Typically the semantics will extend beyond that

which is explicit in the database. Consider the following things that we may take for granted within the organisation but

which provide better context for external users.

1. The field is an identifier for the object.

2. It has a value.

3. The identifier has a type that distinguishes it from other identifiers.

Page 29 of 51

4. The reason and description for the identifier.

These semantic require a number of entities.

 The object entity

 The identifier entity

 The type entities

 String entities for the values

What are the relationships between these entities?

 An object is identified by an Identifier

 An identifier has a type

 A type has a value and a description

 An identifier has a value.

How are these then represented in 3M? In the following screenshot we can see the relationship between Man-

Made_Object and Identifier in the CIDOC CRM ontology. Both source relation and source node are both

adlibXML/recordList/record/priref

 Links & Intermediates 10.3
However, we also wanted to represent the value of the Identifier which has exactly the same source element. There

are two ways to achieve this. The first is to establish another domain, but using Identifier. To do this use the + Map

button and use the same path that was used for Identifier in the previous domain when it was a target in the ‘Man-

Made_Object’ domain.

Page 30 of 51

In this method you create one domain for Man-Made Object and one domain for Identifier

Note: Because the creation of a Domain simply to create a label is inefficient the next version of 3M will allow labels to

be inserted on the interface against an entity without the need to create another Domain.

 s

When the file is processed, because E42_identifier has the same source node and is given the same URI it will produce

linked triples in RDF, i.e.;

Domain > Property > Range / Domain > Property > Range

E22_Man-Made_Object P1_is_identified_by E42_Identifier rdfs:Label Literal Value

However, to avoid having to create domains when we only have one ultimate target of the mapping we can use an

intermediate mapping. This simply means that the ultimate mapping we are interested in goes through an intermediate

entity and there are no other mappings we need to address.

In view mode this looks as follows:

Page 31 of 51

However we also wanted to link to another entity, for example a Type, and have a value for Identifier. This means

removing the intermediate and replacing it with a separate Identifier domain so that we can both document the

mapping to the literal identifier value and to the E55_Type.

The mapping therefore becomes

This means that Identifier has both a label and a link to Type and the authority information is added to that Domain.

Page 32 of 51

Alternatively, if the types are simply constants that are the same for the same field then we can use constants in the

interface itself (see below). Here a relationship using skos:prefLabel uses a literal constant prefLabel. With the ability to

add literals in the interface itself and the ability to add constants, the number of Domains can be reduced.

10.3.1 Additional
In the example one field is the basis for a range of different semantic statements. The level of information that is

recorded changes the way in which the mapping is asserted. If we were not interested in creating E55_Type

information for the E42_Identifier but want to record a value, then the mapping can be executed within E22_Man-

Made_Object Domain using E42_Identifier as the intermediate. If we had wanted to create an E55_Type for the

E42_Identifier and did not need to add additional information against the E42_Identifier then it can be used as an

intermediate for E55_Type. Because we wanted to record information against both the E42_Identifier entity and the

E55_Type entity we needed to create separate domains.

Consider an alternative example using P1_is_identified_by with E41_Appellation. E41_Appellation is used to name a

specific instance of an entity (unlike E55_Type which represents concepts and is used to classify and characterize). We

may have a department that is the keeper of an object. The mapping would look like this:

The object has a department which is recorded in the Source Node as administration.name. The department is the

current keeper of the object. We therefore want to express the relationship between the department and the object

and we want to say what the name of the department is. We may therefore want to include an Appellation (name) for

the department as a literal.

Again this could be expressed through the intermediate of E39_Group.

Page 33 of 51

Since it is E41_Appellation that provides the entity to attach a label containing the person’s name as a string, we can

create an intermediate through E74_Group to E41_Appellation.

The Appellation Domain contains a link to a label with the departmental name as a literal.

However, if we had wanted to describe the type of name with a constant, for example, “curatorial department” (if

administrative.name was a field for curatorial departments), then we can add a constant expression for an entity.

 Multiple Instantiation 10.4
CIDOC CRM supports multiple instantiation. This means that an instance of class A is also regarded as an instance of one

or more other classes at the same time. When multiple instantiation is used, it has the effect that all the properties of

all these classes become available to describe this instance. In 3M it is possible to define multiple instantiation of a

Target Entity by using the Add additional class option.

In the following example we use multiple instantiation to encode the language information. Each input record contains

the tag <administration.name> which contains a name in three different forms. An example is presented here:

<administration.name>

 <value lang="neutral">Nederlandse Geschiedenis</value>

 <value lang="0">History</value>

 <value lang="1">Geschiedenis</value>

 </administration.name>

The person responsible for the mapping knows that the value 1 for attribute lang represents Dutch while the value 0

represents English.

The administration.name is mapped to an E39_Actor who has three different names. Each name is an instance of the

E82_Actor_Appellation class and at the same time the E33_Linguistic_Object class. In this way, the name instance

inherits the properties of both the E82_Actor_Appellation and E33_Linguistic_Object and thus we can assign to each

name a constant expression P72_has_language -> E56_Language with the appropriate value.

Page 34 of 51

Note: In the above example E39_Actor is the same Actor in all three Property-Range links. This is declared explicitly by

using the is Same as option in Add Instance info drop down and naming it a1 (this name is symbolic, it can be anything

as long as it is the same in all instances, see also Additional Link Information).

Page 35 of 51

 Relational database JOIN 10.5
It is quite common that the source XML is the export of a relational data base which uses joins between different

relational tables. In such an XML export the different tables are represented by distinct not nested xml tags.

Let’s assume that we have two relational tables: record and exhibition. There is a join between the field

exhibition.id of table record with the exhibition.id of the table exhibition. The XML output of such a database is

displayed below (please note that this example, although based on the Rijksmuseum data, is artificial, created

only to demonstrate the join).

In X3ML we use the special join operator (==) in the source path to denote relational database joins. The left

part of the join is evaluated relative to the source Domain (//adlibXML/recordList/record) while the right part of

the join is evaluated relative to the Range (//adlibXML/exhibition). The Range will also be the Domain in a

separate map. The X3ML engine is responsible to create the URIs in such a way that the E5_Event (target Range

in the first map) is the same with the E5_Event (target Domain in the second map).

Page 36 of 51

 Additional Link Information 10.6
Each mapping allows the insertion of additional instance information.

is Constant - allows a constant to be defined for the particular entity which will be taken into account during the

definition of the instance generator for this entity. It actually instructs the URI expert who is responsible for the

instance generation functions to use a constant value in the instance and label generators of this particular entity.

is Same as - allows the insertion of a label to use when you want to tell 3M that two instances used in a number of

locations in the same mapping table are the same. For example, if you use an E12 Production as an intermediate node

in many paths in your mapping and you want to ensure that 3M knows that it is the same E12 Production in every case,

simply give each E12 Production the same ‘is Same as’ label. This works within the same domain.

Language – Allows a language code to be inserted to denote the language being used. For example, a literal may be

using a particular language. As in the “is Constant” case, the Language information is going to be used by the person

responsible for the instance and label generation.

Description – General Information to help the person employed to create the URI the policy.

Page 37 of 51

 Links and Rules 10.7

3M allows certain rules to be defined. These are rules about the

information that is contained in the Source Nodes. These don’t

necessarily have to be the Source Node for the current mapping. They

could be rules that use information from other Source Nodes, using

XPath notation.

Currently an IF RULE applies to all the Property-Range tuple. This

means that if the IF RULE is evaluated to false, nothing is created i.e. no

target link and no target entity. So it doesn't really make any

difference if the IF RULE is defined in the property or in the range. The

end result will be the same. If there is an IF RULE defined both in the

property and in the range it is as if having an AND between the two rules.

Currently there is no "else" capability support, so the only way to define the else is by duplicating the Property-Range

tuple and changing the IF RULE accordingly.

One of the reasons that IF RULEs are allowed both in the property and the range is to indicate where the value that is

checked is coming from. But since we deal with XPaths, rules may use information from other Source Nodes too.

Additionally we have the option to expand the design later on in order to support a better "else" mechanism.

10.7.1 Equality and Inequality
This allows ‘If’ based statements. If they evaluate ‘True’ then the mapping for the current instance is executed. For

example;

10.7.2 Testing the value of the current element:
If text() = “Prints & Drawing”

10.7.3 Testing another element
On the same level as the current Source Node element

If ../priref/text() = 1234

Page 38 of 51

10.7.4 Testing the Current Attribute
Where the attribute is @language = “1”, @language = “2”, and so on.

If @language = 1

10.7.5 Testing the attribute of another Element
Where the element is on the same level as the current Source Node where the element is called material and the

attribute is @language = “1”, @language = “2”, and so on.

If ../material/@language = 1

10.7.6 InEquality
This is the same as Equality except that you are testing a negative.

Page 39 of 51

 Existence & Non-Existence 10.8
This simply tests that a Source Node actually exists. Its purpose is to ensure that transformation isn’t halted simply

because a fields doesn’t appear in a particular record. This should be used carefully and excessive use might indicate

issues with the data. Non-Existence tests for the opposite.

 Narrowness 10.9
The mapping is only executed against a test that one concept term is narrower than another.

 Multiple rules 10.10
Sometimes more than one rules have to be defined. 3M allows combining multiple rules using OR and AND operators.

If OR Existence is selected and value provided is text(), then you get the following result (in View mode):

 Comments 10.11
The comments section allows mappers to write useful comments for exchanging

information about mapping different features with the community. These are

divided into different types of comment with the intention that such comments

could be compiled into a mapping knowledgebase.

Page 40 of 51

Page 41 of 51

11 Instance and Label Generation
The instance and label generator editor is located on the More menu and is labelled as “Generators”. This is the tool

that creates Uniform Resource Indicators and Labels for the mapped data which is assigned as the source data and

transformed by the X3ML mapping engine. If we take the earlier example, the XML Source Node,

adlibXML/recordList/record is mapped to E22_Man-Made_Object. The instances of this mapping need to be assigned

a unique URI and labels.

The Generators editor replicates the mapping table but prompts for an Instance Generator and Label Generators.

Clicking on an Instance generator link produces the following screen promoting for a Generator Name (If option

“Generators” in Configuration tab is set to “Manual”). Once you fill in the name, you may add as many arguments as

you want.

On the other hand, if option “Generators” is set to “Auto” in the Configuration tab, the following screen is produced:

Once you choose an instance generator name, appropriate arguments are fetched automatically and you simply have

to fill in the values.

Page 42 of 51

Generators are templates for creating a URI and the same generator can be used throughout the mapping if it is

applicable. The templates need to be defined separately and then uploaded to the mapping (using the generator policy

field in Info tab), in order to be used by the generators. The templates are created in XML and look like this;

<generator_policy>

<generator name="PersistentIdThing" prefix="rijks">

 <pattern>{id}/{thing}/{identifier}</pattern>

 </generator>

<generator_policy>

This simply means that there is a generator called PersistentIdThing and the URI pattern has two elements.

1. The namespace. This is provided by the prefix. You will remember from earlier in this document that a prefix is

a shorter version of a full namespace that needs to be configured in the Info tab of the mapping. Therefore if

we configured the prefix rijks for the full namespace http://collection.rijksmuseum.org/ then this is the first

part of the URI that will be generated by this pattern

2. The rest of the pattern is then defined by the pattern inserted between the pattern element tags.

Currently the URI for this template is http://collection.rijksmuseum.org/{id}/{thing}/{identifier}

We haven’t yet defined what {id}, {thing} and {identifier} are. That’s what the Instance generator Editor is for!

For the Instance Generator Name we therefore can use this template name and then we have two choices:

 If option “Generators” in Configuration tab is set to “Auto” and a generator policy file containing

PersistentIdThing is uploaded , arguments are filled in automatically as soon as we choose generator name

PersistentIdThing. User only has to fill in values.

http://collection.rijksmuseum.org/
http://collection.rijksmuseum.org/%7bid%7d/%7bthing%7d/%7bidentifier%7d

Page 43 of 51

 If option “Generators” in Configuration tab is set to “Manual”, we can “Add Argument” for each of the three

variables to define exactly what these will be replaced with.

In this first part of the generator the name PersistentIdThing is added and the first argument {id} is defined. In this

example, {id} (the pattern variable name we defined in the XML file) is typed as a constant (a hardcoded literal value)

which has the value - id. Therefore the URI now becomes;

http://collection.rijksmuseum.org/id/{thing}/{identifier}

The second argument deals with the second variable in the pattern. {thing} is replaced by another constant - object

The last variable is replaced not by a constant value but a value in the source XML. It’s the actual object id from the

field, priref. The type is xpath which expects an XPath statement. Since the document is currently at <record> and

<priref> is a child element of <record> we can simply use priref/text() to extract the value we want. The result is (if

priref had the value of 12 for this particular instance;

http://collection.rijksmuseum.org/id/object/12

The full set of types are:

http://collection.rijksmuseum.org/id/%7bthing%7d/%7bidentifier%7d
http://collection.rijksmuseum.org/id/object/12

Page 44 of 51

constant: a literal hardcoded value

xpath: an xpath statement to extract some data from the source XML

position: a counter. If value is left blank it starts from 1.

 Custom Instance Generators 11.1
As described already, instance generators are templates that the user can define according to the needs of the data

that are being transformed. However there are instance generators that are more complex and cannot be defined

through a template. These are the Custom Instance Generators and are implemented via code. X3ML allows the

incorporation of new custom instance generators. The Custom Instance Generators that are currently implemented

are:

11.1.1 UUID
This function creates a UUID. It does not need to be defined in the generator policy file. It is built in the X3ML engine.

Usage in the X3ML file:

 <instance_generator name="UUID"/>

11.1.2 Literal
This function creates a Literal. It does not need to be defined in the generator policy file. It is built in the X3ML engine.

Usage in the X3ML file:

<instance_generator name="Literal">

<arg name="text">text()</arg>

<arg name="language" type="constant">de</arg>

</instance_generator>

11.1.3 URIorUUID
This function checks the argument “text” and if it is a valid URI it copies it to the rdf output otherwise it creates a UUID.

Definition in the Generator Policy file:

<generator name="URIorUUID">

<custom generatorClass="gr.forth.URIorUUID">

 <set-arg name="text"/>

 </custom>

</generator>

Usage in the X3ML file:

<instance_generator name="URIorUUID">

<arg name="text">text()</arg>

</instance_generator>

11.1.4 Dates
Currently the two functions GermanDateTime and BMdates are the same.

Definition in the Generator Policy file:

<generator name="GermanDateTime">

<custom generatorClass="gr.forth.GermanDate">

<set-arg name="bound" type="constant"/>

<set-arg name="text"/>

</custom>

</generator>

Definition in the Generator Policy file:

<generator name="BMdates">

<custom generatorClass="gr.forth.GermanDate">

<set-arg name="bound" type="constant"/>

Page 45 of 51

<set-arg name="text"/>

</custom>

</generator>

Usage in the X3ML file:

<instance_generator name="BMdates">

<arg name="bound">Upper</arg>

<arg name="text">text()</arg>

</instance_generator>

<instance_generator name="GermanDateTime">

<arg name="bound">Lower</arg>

<arg name="text">text()</arg>

</instance_generator>

 Label Generators 11.2
X3ML handles label generators in a similar way to instance generators. Each created instance can be assigned one

instance generator but more than one label generators.

There are two built in label generators: Literal which will create an rdfs:label and prefLabel which will create a

skos:prefLabel.

Usage in the X3ML file:

<label_generator name="Literal">

 <arg name="text" type="xpath">text()</arg

</label_generator>

<label_generator name="prefLabel">

 <arg name="text" type="xpath">text()</arg

</label_generator>

Label generators can also be defined with templates as instance generators:

Definition in the Generator Policy file:

<generator name="SimpleLabel">

<pattern>{label}</pattern>

</generator>

Usage in the X3ML file:

<label_generator name="SimpleLabel">

<arg name="label">text()</arg>

</label_generator>

<label_generator name="SimpleLabel">

<arg name="label" type="constant">The-British-Museum</arg>

</label_generator>

<label_generator name="SimpleLabel">

<arg name="label" type="constant">The-British-Museum</arg>

<arg name="language" type="constant">en</arg>

</label_generator>

Page 46 of 51

A typical range in X3ML would look like:

….

<range>

 <source_node>priref</source_node>

 <target_node>

 <entity>

 <type>crm:E42_Identifier</type>

 <instance_generator name="PersistentIdThing">

 <arg name="persistent" type="xpath">../PersistentIdentifier/text()</arg>

 <arg name="thing" type="constant">priref</arg>

 </instance_generator>

 <label_generator name="Literal">

 <arg name="text" type="xpath">../../PersistentIdentifier/text()</arg>

 </label_generator>

 </entity>

 </target_node>

</range>

For the objects with:

<record priref="1" >

<PersistentIdentifier>RM0001.COLLECT.1</PersistentIdentifier>

</record>

<record priref="2" >

<PersistentIdentifier>RM0001.COLLECT.2</PersistentIdentifier>

</record>

and generator:

xmlns:han=http://hdl.handle.net/10934/

 <generator name="PersistentIdThing" prefix="han">

 <pattern>{persistent}/{thing}</pattern>

 </generator>

will produce the rdf triples:

<crm:E42_Identifier rdf:about="http://hdl.handle.net/10934/RM0001.COLLECT.1/priref"/>

 <rdfs:label> RM0001.COLLECT.1</rdfs:label>

</crm:E42_Identifier>

<crm:E42_Identifier rdf:about="http://hdl.handle.net/10934/RM0001.COLLECT.2/priref"/>

 <rdfs:label> RM0001.COLLECT.2</rdfs:label>

</crm:E42_Identifier>

http://hdl.handle.net/10934/

Page 47 of 51

12 Transformation
When a mapping is complete it should consist of a mapping file (X3ML), a source record file (XML) and a generator

policy file (XML). Both XML files should have been uploaded using field in Info tab. If a source record file exists, then

transformation to RDF is possible and Transformation tab is enabled.

Once you click on it, following screen is produced:

Source Record XML File and Generator Policy XML File panes are filled in using uploaded XML files. If a generator policy

file is not available, then a generic one is used (Not recommended). You may edit both panes, to test things on the fly,

but keep in mind that changes are not saved.

Choose the type of RDF output you want (RDF/XML, N-triples or Turtle) and desired UUID Size and then run the

transformation to get result in Target Record RDF File pane.

13 Analysis
You may view an analysis of your mapping by using the Analysis tab and clicking the “view Analysis” link:

Page 48 of 51

Page 49 of 51

14 Quick Reference to Other 3M functions

1. Create New

When you create a new mapping you are asked to give it a title, optionally select one or more of the proposed Target

Schema and then click Finish. 3M proposes a list of Target Schemata but it is not restricted to these. Later on, the user

can load more Target Schemata (see Info Tab) or even delete selected ones.

If a new mapping is created successfully then the id of the new mapping is displayed. You can use the mappings link to

return to the main screen.

Page 50 of 51

2. View

View provides other users with the opportunity of seeing mappings that they do not have editing rights to. The view is

the same as the view mode in an editable mapping. Just select a mapping from the list so that it is highlighted and

choose View from the main menu.

3. Edit

This options allows an authorised user (with edit rights) to edit the mapping and its associated settings. The required

mapping must be selected in the mapping list.

4. Delete

Deletes a highlighted mapping permanently from the system. The action must be confirmed by clicking OK from the

pop up window that appears, but can be cancelled. The creator or any editor can delete the mapping file from the

system.

5. More

a. Request for Publication

Request the publication of an “unpublished” mapping that the user has finished editing. In order to perform
this action the user should select the desired “unpublished” mapping from the list and then choose from the
upper part of the central region the action Request for Publish from the dropdown menu More. A message
window pops up asking for confirmation or not of the action. If he/she wishes to proceed to the publication
of the mapping, he/she clicks the OK button and then the system shows a message informing the user that
the mapping is now pending for publishing. 3M

If the user wishes to cancel the request for publish, he/she clicks the Cancel button and automatically the
action is cancelled. The system administrator will decide if the mapping will be published. Published
mappings cannot be edited anymore and they appear in the CIDOC-CRM site http://www.cidoc-
crm.org/mapping_technology.html

b. Export to XML

Export a specific mapping at the local file system. In order to perform this action the user should select the
desired mapping from the list and then click to the action Export to XML from the dropdown menu More.
After the completion of this action, a zip file with the Id of the mapping (e.g. Mapping82.zip) is downloaded
locally. The zip file contains the X3ML definition of the mapping in XML format and all the accompanying
source and target schemata and records. Currently this action is necessary when the user wants to get the
X3ML definition in order to invoke the X3ML engine (offline tool) that will transform the source records to
rdf (target records).

c. Import from XML

Import a mapping that has been locally edited in the editor. In order to perform this action the user should
select from the local file system the zip file that contains the X3ML definition of the mapping and all the
accompanying source and target schemata and records that he aims to import and then click to the action
Import from XML from the menu More.

d. Create Version

Create a new version for a specific mapping. In order to perform this action the user should select the
desired mapping from the list and then click the action Create Version from the dropdown menu More.
After the completion of this action, a version of the current state of the specific mapping and also of the
referenced files is created. Then the user may precede working on the specific mapping.

e. View Versions

http://www.cidoc-crm.org/mapping_technology.html
http://www.cidoc-crm.org/mapping_technology.html

Page 51 of 51

View the versions for a specific mapping. In order to perform this action the user should select the desired
mapping from the list and then click the action View Versions from the dropdown menu More. The result of
this action is a list with the created versions and the user can either View or Export to XML a specific version.

f. Unlock File

Unlock a specific mapping. Editing locks a mapping. Normally when 3MEditor window is closed, mapping is
unlocked. However, sometimes something goes wrong and the lock remains valid for the whole session of
the user. In order to perform this action, the user should select the desired mapping from the list and then
click the action Unlock File from the dropdown menu More. The selected mapping is unlocked and can be
used by other users that have write rights on it.

g. Copy XML

Aim of this action is to offer the editor the possibility to create a copy of a mapping. In order to perform this
action the editor should select the desired mapping from the list and then click to the action Copy XML from
the dropdown menu More.

h. Generators

Edit a specific mapping in order to add instance and label generation functions. In order to perform this
action the user should select the desired mapping from the list and then choose from the upper part of the
central region the action Generators from the dropdown menu More.

i. Analysis

Show analysis for a specific mapping. In order to perform this action the user should select the desired
mapping from the list and then choose from the upper part of the central region the action Analysis from
the dropdown menu More.

j. Compare

Show a “diff-like” representation for 2 selected mappings. In order to perform this action the user should
select the action Compare from the dropdown menu More. Then, two mappings have to be selected and
once “Compare” button is clicked, selected mappings are presented side-by-side and textual differences are
highlighted.

k. Rights

Change the rights of a specific mapping. In order to perform this action the user should select the desired
mapping from the list and then choose from the upper part of the central region the action Rights from the
dropdown menu More. A list with all the users will appear and the user can select the users that he wants to
give write rights. When he selects all the desired users he must click on Finish.

6. Search
This function offers to the user the capability to locate mappings. The user can either type the words he/she
likes to search about, restricting in that way the results to those that contain the specific words, or he/she
may group the results according to the status of the card (published, pending etc.) which is available in the
dropdown menu next to the Search. Search is currently case sensitive.

